Section 13: Trigonometry - Part 1

Topic 1: The Unit Circle - Part 1 281
Topic 2: The Unit Circle - Part 2 282
Topic 3: The Radian Measure - Part 1 284
Topic 4: The Radian Measure - Part 2 286
Topic 5: More Conversions with Radians 288
Topic 6: Arc Measure 289
Visit MathNation.com or search "Math Nation" in your phone or tablet's app store to watch the
videos that go along with this workbook!

The following Mathematics Florida Standards will be covered in this section:

F-TF.1.1 - Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle; Convert between degrees and radians.
F-TF.1.2 - Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.

Section 13 - Trigonometry - Part 1

Section 13 - Topic 1

The Unit Circle - Part 1

Let's review trigonometric ratios.

Label the hypotenuse, opposite, and adjacent legs of θ.
$\sin \theta=$ \qquad $\cos \theta=$ \qquad $\tan \theta=$ \qquad

Let's review special right triangles.

$$
45^{\circ}-45^{\circ}-90^{\circ}
$$

\qquad

Consider the following diagram of a unit circle.

> The unit circle has a radius of \qquad that can be used to determine values of \qquad functions.
> The unit circle is centered at the \qquad .
$>$ \qquad is the angle formed by the positive circle (also called the and a ray that intersects the unit
\qquad side).
> The angle measure is \qquad if the rotation of the terminal side is counterclockwise and if the rotation of the terminal side is clockwise.
> If the base of the right triangle is x, and the height is y, the ordered pair at which the angle intersects the unit circle is \qquad .

What is the length of the hypotenuse of the unit circle?

Write the trigonometric functions for θ in the unit circle.
$\sin \theta=$ \qquad $\cos \theta=$ \qquad $\tan \theta=$ \qquad

We can use these trigonometric functions to find \qquad
\qquad on the unit circle.

Use the unit circle to complete the following chart by filling in the sign of each function's value in each quadrant.

Trigonometric Function	I	II	III	IV
$\sin \theta$				
$\cos \theta$				
$\tan \theta$				

Section 13 - Topic 2

 The Unit Circle - Part 2
Let's Practice!

1. Find the coordinates of the point of intersection of the unit circle and a 30° angle.

2. Find the coordinates of the point of intersection of the unit circle and a -60° angle.
 Section 13: Trigonometry - Part 1
3. Find the coordinates of the point of intersection of the unit circle and a 45° angle.

4. Find the coordinates of the point of intersection of the unit circle and a -30° angle.

BEAT THE TEST!

1. Draw triangle(s) in the unit circle below to illustrate an angle that has a value of $\cos \theta=-\frac{\sqrt{3}}{2}$.

